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Summary

This report discusses the application of a novel polyacrylate-based ion-exchange material (IEM) for the removal
of lead (Pb) ions from water. Preliminary testing includes the establishment of the operating pH range, capacity
information, and the effect of calcium and anions in the matrix. Batch testing with powder indicates slightly
different optimal operational conditions from those used for column testing. The ion exchanger is excellent for
removing lead from aqueous solutions.

Implications

This work demonstrates the ability of a polyacrylate ion-exchange material to remove toxic metals from water.
The material has significant affinity for lead in the presence of considerable amounts of competing or complexing
ions, and it also works well in the presence of hard water to readily remove other toxic metals. An important
property of this material is that it can be fabricated in many forms, such as coatings, films, and conventional beads.

Introduction

Lead (Pb) in the water supply is an ever-increasing concern. Common sources include the corrosion of
transport systems and material leached from the environment. The environmental sources are diverse, ranging from
lead paint in the soil to spillage at battery cracking facilities.1,2 Because of the extreme toxicity of lead, acceptable
concentration levels of lead in potable water must be maintained at low parts per billion. One of the most common
techniques for lowering the concentration of metal ions to suitable levels in potable water is ion-exchange treatment.

In the environment, a proposed method of remediation technology is soil washing. This treatment appears to be
extremely attractive because of the large quantities of contaminated soil that would otherwise have to be contained
in a waste storage facility.2,3 In soil washing, the soil is pretreated to remove large lead sources (e.g., bullets).  The
corroded lead that has leached into the soil is stripped with a leachant. Because the lead encountered in different
washing situations occurs in different forms, the wash solution must be tailored to the site. Typical wash solutions
that have been employed range from a simple acidification medium, such as dilute nitric or fluosilicic acid, to strong
complexing agents, such as ethylenediaminetetraacetic acid (EDTA). Although EDTA has been shown to solubilize
lead fairly well, it creates other problems with the soil to be subsequently recovered. Weak chelators have been
employed as well, including nitrilotriacetic acid and acetic acid. The acetic acid is attractive as it is inexpensive,
has been demonstrated to be a moderately good leachant, and is readily biodegradable. The leachate is then stripped
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by ion-exchange technology and recycled. This last step in the loop is often problematical, since a good leachant
is often hard to strip of the solubilized lead.

A novel polyacrylate based ion-exchange material (IEM) was developed at NASA after the serendipitous
discovery that a marginal battery separator retained copper ions from distilled water. The source of the copper in
the distilled water used to wash the separator was traced to a corroding line in the still. In earlier versions of the
separator, polyacrylic acid was cross-linked with radiation to produce films. These materials had ion-exchange
capacity but were readily fouled prior to reaching a useful loading capacity.4-7 In subsequent versions of the
material, polyvinyl alcohol was incorporated in the film matrix, which solved the fouling problem.8,12 The new
ion-exchange material is chemically cross-linked at the polyvinyl alcohol leaving the polyacrylic acid loosely
trapped in the matrix. This configuration of the material provides additional flexibility for the polyacrylic acid sites
to exchange ions.

We have characterized the new ion-exchange material for removal of lead in the presence of various anions that
are commonly found in the environment.  Chloride was also tested because it is ubiquitous and will be of interest in
systems where noncomplexing leachants such as nitric acid are employed.  Acetic acid was investigated as a weak
complexing agent associated with proposed soil-washing scenarios.  The study includes the effects of pH because
it is important when using weak cation exchangers and the calcium ion, which often fouls ion exchangers. For
comparison, limited data on copper and zinc are also presented.

Materials and Methods

The ion-exchange resin was obtained from Southwest Research Institute, San Antonio, Texas. The powder was
manufactured by spray-drying a solution containing 8.4 percent solids (1:1 mixture of polyvinyl alcohol (PVA) and
polyacrylic acid (PAA)) and 0.13 percent glutaraldehyde to cross-link the polyvinyl alcohol framework. 8,12  The
ion-exchange beads were manufactured by a novel patented process.13  The aqueous phase contained 14 percent
solids (1:1 mixture of polyvinyl alcohol and polyacrylic acid) and 1.3 percent glutaraldehyde.  This solution was
mixed with mineral oil and fumed silica in a sufficient amount to cause droplets of resin to remain suspended after
stirring stopped. The mixture was heated to 60 to 70 °C overnight. The spheres were strained, washed with hexane,
and air dried. All ion-exchange materials were received in the acid form.  Prior to use in uptake experiments, they
were converted to the calcium form.  Powder was stirred with excess suspended calcium hydroxide, filtered and
washed prior to use. Bead conversion is described below.

The capacity of the ion-exchange materials was determined by equilibrating the acid IEM with an excess of
standard sodium hydroxide for at least 12 hr.  The resin was filtered off and the excess hydroxide was determined by
titration with standard hydrochloric acid. For batch tests, the ion-exchange material (typically 100 mg) was stirred
with the test solution (typically 100 ml) and aliquots were taken at defined time intervals.  An aliquot was taken
prior to the introduction of the ion-exchange material to the test. The amount taken was such that all aliquots totaled
less than 5 percent of the original volume. Metal ion concentrations were determined on all aliquots by flame or
graphite furnace atomic absorption spectrophotometry (AAS) using the conditions described in SW-84614 or as

close as possible. The pH was determined at the start and end of each experiment.15

Column testing was performed in glass columns with sintered glass frits at either end. The columns were
typically packed with 1 g of beads 80 percent converted to the calcium form. Challenge solutions containing various
concentrations of lead and lead with excess anions at varying pH were pumped continuously through the column.
The effluent was collected for AAS and pH analysis. The ion-exchange material was weighed in the acid form,
converted to the correct extent with standard calcium hydroxide solution, and loaded into the column. The void
volume of the column was monitored by the injection of a salt spike to generate a signal at a conductivity detector
placed at the column effluent. Challenge solutions were prepared from the lead salts with the corresponding anion.
To prevent hydrolysis and subsequent precipitation of the lead, the solutions were stabilized with a trace of
hexamethylenetetramine (a weak complexing agent).  The pH was then adjusted with nitric acid. For challenge
solutions containing excess anion, the solution was prepared such that an excess of 0.1-molar anion was generated
from 0.09-molar sodium salt and 0.005-molar calcium salt. Various challenge solutions, column geometries, and
flow conditions were tested as described in the subsequent sections and figures.
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Results

The powder form of the IEM, nominally in the 5- to 75-mm range, was used as received. Titration of this
material indicated a capacity of 4.81+0.11 meq/g IEM. Equilibration of the calcium form of the IEM with a
large excess of copper ions in an acetate buffer at pH 5.0 yielded a capacity of 4.8 meq/g IEM. Titration of two
subsequent lots of powder yielded capacities of 5.29- and 5.36-meq/g IEM. By end point differences in the back
titration of these materials, it is possible to determine the amount of polyacrylic acid released from the cross-linked
polyvinyl alcohol during the reaction with the sodium hydroxide. The leakage numbers correspond to 1.72, 0.86,
and 1.05 meq/g, respectively, indicating that the latter lots of IEM were cross-linked more efficiently and therefore
yielded the higher capacities with lower leakage.

Figure 1 demonstrates the pH working range for the powder form of the IEM using copper and lead as test
ions. Figure 2 illustrates the rate at which the powder and film forms of the IEM take up lead ions in batch testing.
For comparison, the sodium form of the Biorad cation-exchange resin (AG 50W-X2, 38 to 75 mm) for uptake of
copper ions is also presented. Table 1 summarizes the results of 16 separate conditions tested and demonstrates the
immunity of the IEM against some common anions for the uptake of lead ions when 100 mg of IEM powder is
challenged with 100 ml of test solution under the conditions specified in the table.

The beads received from Southwest Research Institute were fractionated into two sizes (600 to 1400 mm and
<600 mm).  These were presumably manufactured as one lot having a similar composition. The <600-mm lot was
further sized into two fractions, <250 mm and 250 to 600 mm. The limited quantity of the latter fraction was saved
for testing in column experiments and was then recycled for capacity testing. The other two fractions were subjected
to several batch experiments. Table 2 gives capacity and leakage values for the limited testing performed on these
materials. It is apparent that the recycled beads give considerably lower leakage values and that the capacity is in
line with that of the original material. Digestion of the beads resulted in a silica content of approximately 10 percent
by weight from entrapped silica introduced during the manufacturing process.

For comparison, the beads packed into the columns were weighed and the column dimensions were recorded
along with the experimentally measured void volumes. Typically, 1.00 g of the 80-percent converted beads packed
into a 10-mm-inside-diameter (id) column produced a bed 60 mm long (4.7 ml) with a void volume of 2.5 ml. The
bulk density of the beads was then calculated to be 0.2 g/cm3 (dry) and the void volume to be 53 percent. In most
cases, the length of the bed decreased by 2 to 3 mm by the end of the experiment.

Two different experiments compared beads that were converted to the 20- and 80-percent calcium forms.
Figure 3 is a plot of the lead concentration of the exit Ce divided by the initial challenge concentration Ci versus the
volume of lead solution run through the column. It is apparent that breakthrough occurs early with the 20-percent
converted beads.  Even at a very low challenge concentration (100 ppm), the 20-percent converted beads are not as
effective at removing lead as is the 80-percent converted material. The behavior of the columns is understood by
close examination of the associated pH profile of the effluent during a column experiment.  In figure 4, the effluent
pH is plotted for the two 500-ppm Pb samples in figure 3.  Figure 4 demonstrates the relationship between percent of
bead conversion to the calcium form and ability to maintain pH as lead is removed from the influent solution.

A careful examination of the pH profiles for all column tests performed with the 80-percent converted IEM and
lead solutions containing chloride or nitrate is shown in figure 5.  This figure is a plot of the pH of the first eluent
collected pHe from the column versus the pH of the influent challenge solution pHi. The figure reveals that the resin
initially attempts to adjust the pH of the solution in the column to a value coincidentally close to the pKa of the IEM,
approximately 5.5. A plot of (pHi - pHe) versus the pH of the challenge solution pHi is presented in figure 6.  This
plot demonstrates the amount of pH adjustment on the solution by the column.

Figure 7 shows typical breakthrough curves for columns of varying length and the effect of nitrate ions.  Excess
nitrate ions only influence this system by providing a high ionic strength. In subsequent experiments, the longer
length columns were used because they provided more ideal curves. For comparison, the weights of resin used to
vary the column length are included in the legend to the figure.  It is also evident that the high ionic strength
improves the performance of the IEM generally. In another experiment (not shown), the effect of ionic strength was
a doubling of the apparent onset of column breakthrough for two flow rates. Figure 8 shows the effect of flow rate
on column retention of lead.  Figure 9 is a plot of the lead in the IEM at the end of the experiment normalized by
the weight of IEM used in the experiment plotted against the final reading of Ce/Ci for 30 column experiments. The
large scatter in the data is attributable to varying conditions of flow rate, column length, pH, anion associated with
the Pb salt, and in some cases, 0.1-molar excess of the corresponding anion. Extrapolation of the data having
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Ce/Ci > 0.01 (22 data points) to Ce/Ci = 0 indicates that Pb loading of about 10 percent by weight (approx. 20 percent
of the calculated equilibrium capacity) leads to breakthrough in unoptimized conditions. In the most extreme data, at
Ce/Ci > 0.8, the resin has, at best, taken up 28 percent of its weight as lead, which is only 60 percent of the calculated
equilibrium capacity.

The effect of chloride was examined because it is ubiquitous, has complexing ability, and forms a sparingly
soluble salt with lead.  Acetate is of interest as acetic acid has been used in soil washing scenarios.  Acetate has
moderate complexing ability and acts as a solution buffering agent. Figure 10 presents additional data for column
experiments involving chloride and acetate.

Discussion

Preliminary investigations with laboratory samples of the ion-exchange material indicated that it has the
following properties: high capacity; mechanical durability; immunity to calcium; immunity to iron and several other
nontoxic metal ions; high efficiency in the removal of lead, cadmium, and other toxic metal ions; easy recyclability
or disposability; and easy formation into many shapes (e.g., beads, fibers, film, or coated magnetic beads).8-12

Because of these properties, we decided to have the material manufactured by a commercially scalable process for
evaluation as a potentially useful product.  Proposed uses include drinking water purification and application in
environmental processes such as soil washing. To date, powder, beads, film (both porous fiberglass-reinforced and
nonporous), and irregular granules have been produced at the pilot scale.  These potential products indicate that the
manufacturing process for this material is feasible.

Powder Properties

The capacity numbers are consistent with the theoretically calculated value of just under 7 meq/g for a material
containing 50 percent PAA. From prior experimentation with bead, granular, powder, and film IEM, there are a
number of reasons for the leakage.12 A small amount of initial leakage appears to be inherent in the structure of the
material in that the PVA is cross-linked into a matrix that entangles the PAA, the only mechanism for retention of
the PAA in the resin. Some small amount of additional PAA leaks during the first conversion to the salt form, the
active form of the resin. The conversion process with calcium tends to shrink the resin, which causes the remaining
PAA to be more strongly retained in the resin so that subsequent leakage is negligible. Consequently, the working
version of the IEM uses the calcium salt, which is immune to leakage and deterioration of mechanical strength.
Conversion with sodium hydroxide as in the titrations tends to expand the volume of the resin (prior unpublished
studies indicate by as much as 40 percent), causing deterioration of the mechanical strength.  Sodium conversion
may also release more PAA than the working calcium form.  Hence, the leakage numbers may be an overestimate
and the actual capacities reported may be underestimates. In the formulation process, we have also observed that
too little crosslinking and/or using a PAA with lower molecular weight facilitates leakage. This topic will be further
addressed in the section Bead Properties.

The IEM is a weak acid cation-exchange resin estimated to have a pKa of approximately 5.5. The operational
pH range for the IEM (fig. 1) is limited at lower pH values as acid competes heavily for the resin sites. The powder
does not appear to suffer the same shortcoming described in our earlier work where many metal ions that exist as
neutral precipitates or as anionic hydroxy species at the higher pH values (typically pH > 7) are not taken up by the
film form of the IEM. In the present work, the powder IEM clearly removed copper effectively to a pH approaching
8.  In our earlier work with films,9 the copper recovery had dropped from nearly 100 percent at pH 6.5 to 50 percent
at a pH slightly greater than 7. The extended operational pH range is probably due to the higher surface area of the
powder, hence the better performance. The slowness in uptake for the film versus the powder (fig. 2) is attributed to
mass transfer problems associated with the film’s being a single entity in a large volume of solution. Nonetheless, it
is as effective at removing ions provided that there is sufficient equilibration time. At the lower pH values, the
anions evaluated in table 1 are less problematical than the pH.  At higher pH values, the acetate, which has a high
formation constant with lead,16 lowers the effectiveness of the IEM as discussed in the section Column Performance.
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Bead Properties

Beads would be expected to have a 10-percent lower capacity than the powder due to the silica incorporated
during manufacturing. The rest of the capacity reduction in the beads is attributable to a lack of bead porosity and
the resulting mass diffusion problems. For the purpose of comparison later, the calculated uptake of lead based on a
capacity of 4.3-meq/g IEM is 45 percent of the weight of the IEM. From prior comparative studies with the film and
with irregular granular and powder forms of the IEM, the majority of the performance properties (e.g., pKa of the
IEM, capacity, affinity for metal ions, and pH uptake profiles for various metals) are very similar.  The two
exceptions are the kinetic-related properties and the apparent extended operating pH range for the powder
demonstrated in the single experiment reported herein (fig. 1).

Column Performance

Even though the columns prepared with 20-percent converted beads do not work well at high-challenge
concentrations, figure 3 demonstrates that a substantial amount of lead can be removed for low-challenge
concentrations with a 20-percent converted material. The key to the behavior of the columns is that the resin
behaves as a pH buffer by altering the pH of the medium passing through the column, as seen in figure 4. For
water at a pH of 5 passing through an 80-percent converted column (approx. IEM pH of 6.6), the column would
be expected to pick up hydrogen ions from the medium and release calcium from the resin.  This behavior should
result in a slight increase in the pH of the column effluent; however, this activity is not what was observed. For
lead solutions passing through the column, the lead was exchanged onto the column, releasing both calcium and
hydrogen ions.  The hydrogen release causes the drop in the pH of the solution passing down the column. In
columns where the percent conversion to the calcium form was greater, less hydrogen was released into the system
to lower the pH of the medium passing through the remainder of the column (fig. 4). For the 20-percent converted
beads (approx. IEM pH of 4.9) in figure 4, substantial hydrogen ions are released, dropping the pH of the medium to
about 3.  For higher lead concentrations, the effect would be even more dramatic. From figure 1, the equilibrium
concentration of lead in the solution over the IEM at pH 3 should be 60 percent of the original concentration, which
is what was observed in the effluent. In all other studies, 80-percent converted beads were used and the pH of the
effluent was monitored as samples were collected. Examination of the pH profiles for each column experiment is
required for the correct interpretation of results. Interpretations tend to be complicated by a drifting pH and the
inability to maintain the influent pH during runs, even for the highly acetate-buffered test solutions.  Figures 5 and 6
show the effect of the column on the pH of the challenge solution. Figure 5 demonstrates that the column attempts to
adjust the pH to a value coincidentally equal to the pKa of the ion-exchange material.  A good linear correlation of
the amount of pH adjustment initially performed by the column on the challenge solution to adjust the pH toward
5.6 is shown in figure 6.  Other percent conversions would be expected to produce a similar effect, although the pH
value converged upon should be different.  In an unrelated experiment using the large beads to develop a home test
kit for determination of lead (ppb level) in drinking water that also contained copper and zinc (ppm range), the pH of
the challenge solutions was buffered to values between 3.8 and 4.5.  At the lower pH, the majority of the lead and a
small fraction of the copper is retained on the column whereas no zinc is collected. At the higher pH, lead and the
majority of the copper are retained by the column but only a small fraction of the zinc is removed from the challenge
solution.  These experiments further illustrate the effect of pH on the retention of metal ions on this ion-exchange
material.

The optimization of column conditions presented in figures 7 and 8 are as expected.  The larger columns
provide more reasonable looking curves as flow patterns in the columns are more homogeneous.  Slower flow rates
provide better equilibration, particularly with respect to mass transfer in the ion-exchange media.  Based upon the
results of these experiments, subsequent experiments used 1 g of ion-exchange material and a flow rate of 2 ml/min.
The higher, unoptimized flow rate was used to expedite breakthrough conditions.  The effect of ionic strength
observed in figure 7 is the result of several simultaneous processes, an advanced discussion of which is beyond the
scope of this report.  Briefly, the processes leading to the improved performance of the ion-exchange material
include a combination of the change in activity of the exchanging ions along with a lowering of the surface tension
of the solution.  The ionic strength alters the activity of the exchanging ions in predictable fashion.  The change in
surface tension promotes mass transfer across the interface between the solution and ion-exchange resin.
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A major drawback of the IEM is that mass diffusion in the resin is a limiting factor for the breakthrough of lead.
As the flow rate is slowed, there is more time for lead at the surface of the resin to diffuse inwardly.  Hence, in
figure 8, the amount of lead removed per gram of IEM is dramatically improved at a flow rate of 0.5 ml per minute.
Because the intent of these experiments was to amplify the differences in column performance by various conditions
in the challenge solutions, higher flow rates than optimal were used. The actual performance of the columns used in
the following experiments could be greatly improved if a slower flow rate were used. The problems associated with
mass transfer in the IEM are confirmed in figure 9, which indicates that Pb loading of about 10 percent by weight
leads to breakthrough for unoptimized conditions.  To give a perspective, the 0.5-ml-per-minute data having
Ci/Ce = 0.0004 at the end of the run has a loading of 17 percent by weight (38 percent of theoretical).  This indicates
that optimizing the conditions allows considerably more lead to be removed before breakthrough is approached.

Chloride ion weakly complexes lead ion and in addition, lead chloride is sparingly soluble. From equilibrium
constant calculations, the solubility of the lead is complete under all conditions tested, including that in the presence
of 0.1-molar excess chloride ion. Furthermore, the concentrations of PbCl+ and PbCl3

-  are negligible at 500-ppm Pb
with 0.1-molar excess chloride ion.16 In a preliminary experiment at pH 5.5 using 107-ppm lead chloride pumped at
2 ml/min through a 10-mm-id column containing 1.00 g of 80-percent converted IEM, the lead concentration in the
column effluent was lowered to below the limit of instrumental detection (<2 ppb Pb) throughout the run (total
volume of 240 ml). Effluent lead concentrations in the low-ppb range were typical of the IEM performance prior to
column breakthrough for challenge solutions containing modest lead concentrations. Figure 10 illustrates the effect
of various anions on the retention of lead. The interpretation of the figure is complicated by the effect of pH on the
system. Plots for nitrate are complicated by the drift of the pH to unfavorable absorption values toward the end of
the run.  The pH started in the 5.8 range and drifted toward 4 or less for the last data points, demonstrating that lead
preferentially displaces calcium over hydrogen.  The chloride curves have a less pronounced pH effect and exhibit
the same general trend as that for the ionic strength curves presented in figure 7. The last data points on the chloride
curves show that in the presence of 0.1-molar excess chloride, the Pb is retained more effectively, even with slightly
less favorable pH (pH = 5.5 vs. 5.3 for the excess-anion run).

Acetate is a complexing anion that neutralizes the charge on the lead, rendering it a neutral species.16 According
to the values of the stepwise formation constants, appreciable amounts of PbAc+ can be generated as the acetate
proceeds to form the neutral PbAc2 species. Either the Pb2+ or the PbAc+ ion is capable of immediately adsorbing to
the IEM; however, the equilibrium is probably reestablished rapidly enough to produce substantial cationic species
as the IEM removes the lead from solution. Nonetheless, acetate competes markedly with the IEM for lead. For
500-ppm Pb prepared from lead acetate, substantial amounts of the lead are in cationic species at pH 4 where the
IEM is less effective. As the pH rises to 5 and 6, the amount of cationic species is on the order of two-thirds and
one-half, respectively (exact calculations rely on an iterative process). In the presence of a large excess of acetate
(0.1 molar), the calculations are more exact and the concentrations of cationic lead drop markedly from pH 4
(2 percent Pb2+ and 1 percent PbAc+) to 6 (<0.5 percent Pb2+ plus PbAc+). Under these conditions, the rapid
establishment of equilibrium in the solution enables the IEM to remove lead successfully (see fig. 10). The lead
breakthrough correlates directly with the amount and strength of competing ligands in solution. In unrelated beaker
experiments with zinc and IEM films,* similar results were achieved with EDTA.  None of the zinc was removed
from the solution by the IEM because of the complexing strength of the ligand that creates an anionic complex,
ZnEDTA2-.

A final note regarding the often-detrimental effects of calcium in the matrices is that this resin operates most
effectively in the calcium form for all divalent cations that have been tested with the IEM to date. This point is
further demonstrated in the excess-anion experiments wherein the matrix is approximately 0.005 molar (200 ppm)
in calcium. In experiments performed stripping lead from seawater, the effect of sodium was to eventually displace
calcium and expand the resin, causing deterioration of the IEM and column performance. To this end, we spiked the
matrices with small amounts of calcium to replenish the resin as the experiment proceeded. In all experiments using
excess, noncomplexing anions, results were superior to runs without the excess anions. These results are more likely
due to ionic strength considerations than to calcium enhancement.

                                                            
*
Unpublished results of Dr. J. Gorse, Department of Chemistry, Baldwin Wallace College, Berea, OH, March, 1993.
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Conclusion

The ion-exchange material (IEM), developed from battery separator technology, is composed of cross-linked
polyvinyl alcohol and entrapped polyacrylic acid and can be produced in a variety of forms. The current evaluation
is designed to demonstrate the ability of the material as a replacement for column ion exchangers where weak acid
exchangers are applicable. Data are presented for lead (Pb) adsorption under a number of physical and chemical
conditions. Physical conditions were several geometries, the quantity of IEM in the test column, and flow rates.
The chemical conditions were lead concentration, pH, ionic strength, and effect of weakly competing organic
complexing agents. The ion-exchange material removed lead effectively under most conditions; however, the
breakthrough characteristics for similar columns were greatly affected by pH and the presence of complexing
anions. Under ideal conditions, this ion-exchange material will remove modest amounts of lead (high-ppm
concentration range) and reduce the Pb concentration to the low-ppb range.
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TABLE 1.æRECOVERY OF LEAD FROM VARIOUS MATRICES

Lead recovered in ion-exchange material, Hydrogen ion
percent (std deviation)a      concentration,

Anion pH

None Nitrate Chloride Acetate
10-ppm lead with 0.1-molar anion

92.2 (0.4) 92 91 81    5.0
9.2 (3.6) 21 5.5 (0.5) 0 3.0

100-ppm lead with 0.1-molar anion
9.2 (2.4) 15 8 1 3.0

500-ppm lead with 0.1-molar anion
10.4 (3.9) 16.2 11 14 3.0

aStandard deviation between replicate experiments.

TABLE 2.æCAPACITY AND LEAKAGE OF ION-EXCHANGE
MATERIAL (IEM) BEADS

Bead size, Capacity Leakage
mm meq/g meq/gStandard

deviationa

Standard
deviationa

< 250 4.2 ----- ----- -----

250 to 600 b4.3 0.07 b0.4 0.03
600 to 1400 5.4 .02 1.2 .02

aStandard deviation, n = 2.
bDetermined on beads recycled from column testing.
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Figure 1.—Fraction of metal removed as function of pH for calcium (Ca) form of
   ion-exchange material (IEM) powder.
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Figure 2.—Metal ion concentration remaining in solution as function of equilibra-
   tion time for various resins. 
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Figure 3.—Fraction of original concentration of lead nitrate (PbNO3) and lead 
   chloride (PbCl2) in column effluent (Ce/Ci values � 1000) as function of volume 
   of lead solution through columns for IEM beads 80 and 20 percent converted to
   calcium form. Flow rate through columns, 1.0 ml/min.
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Figure 4.—Correlation of fraction of original concentration of lead in column 
   effluent Ce/Ci as  function of volume of lead solution through column to pH of 
   column effluent as function of volume through column for IEM beads 80 percent 
   and 20 percent converted to calcium form. Note: pH of challenge solution is pH
   at volume = 0 ml.
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Figure 5.—pH of column effluent pHe as function of pH of column influent pHi 
   (pHi taken as pH of challenge solution) for challenge solutions containing 
   nitrate and chloride. 
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Figure 6.—Difference in pH between column effluent pHe and column influent pHi 
   (pHi taken as pH of challenge solution) as function of pHi. 
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Figure 7.—Fraction of original concentration of lead in column effluent (Ce/Ci) as 
   function of volume of lead solution through column for columns of various 
   lengths challenged with low- and high-ionic-strength lead solutions. Flow rate, 
   2.0 ml/min of 500-ppm lead nitrate through 80-percent IEM converted to calcium 
   form.
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Figure 8.—Fraction of original concentration of lead in column effluent (Ce/Ci) as 
   function of volume of lead solution through column for various flow rates. 
   Columns contained 0.5 g of 80-percent calcium-converted IEM challenged with 
   500-ppm lead nitrate.
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Figure 10.—Fraction of original concentration of lead in column effluent (Ce/Ci) as 
   function of volume of lead solution through column for various anions. Lead 
   concentration, 500 ppm. 
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